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REQUIREMENTS FOR SIMULATION-BASED DESIGN

• Sufficient Level of Accuracy

• Known Level of Accuracy

• Acceptable Computational Costs

• Acceptable Man-Power Costs

• Fast Turn-Around Time

DEI
MVS B N IN

VIGET
EV

VET
TES
 EN

NOV
TAM
TVM

3



SHAPE DESIGN VIA CONTROL THEORY

• Apply the theory of control of PDEs (of the flow) by boundary

control (the shape).

• Find the Frechet derivative (infinite dimensional gradient) of

a cost function (performance measure) with respect to the

shape by solving the adjoint equation in addition to the flow

equation.

• Modify the shape in the sense defined by the smoothed

gradient.

• Repeat until the performance value approaches an optimum.
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PROCESS OVERVIEW

1. Solve the flow equations for ρ, u1, u2, p.
√

2. Solve the adjoint equations for ψ.
√

3. Evaluate G.
√

4. Project G into an allowable subspace.

5. Update the shape.

6. Return to 1 until convergence is reached.

Practical implementation of the design method relies heavily upon fast and
accurate solvers for both the state (w) and co-state (ψ) systems.
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SEARCH PROCEDURE - 1

A simple descent method in which small steps are taken in the negative
gradient direction is used.

δF = −λG
can be regarded as simulating the time dependent process

dF
dt

= −G

where λ is the time step ∆t. Let A be the Hessian matrix with

Aij =
∂Gi

∂Fj
=

∂2I

∂Fi∂Fj
.
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SEARCH PROCEDURE - 2

Suppose that a locally minimum value of the cost function I∗ = I(F∗)
is attained when F = F∗. Then the gradient G∗ = G(F∗) must be zero,
while the Hessian matrix A∗ = A(F∗) must be positive definite. Since
G∗ is zero, the cost function can be expanded as a Taylor series in the
neighborhood of F∗ with the form

I(F) = I∗ +
1
2

(F − F∗)A (F − F∗) + . . .

Correspondingly,
G(F) = A (F − F∗) + . . .
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SEARCH PROCEDURE - 3

As F approaches F∗, the leading terms become dominant. Then, setting
F̂ = (F − F∗), the search process approximates

dF̂
dt

= −A∗F̂ .

Also, since A∗ is positive definite it can be expanded as

A∗ = RMRT ,

where M is a diagonal matrix containing the eigenvalues of A∗, and

RRT = RTR = I.
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SEARCH PROCEDURE - 4

Setting v = RT F̂ ,

the search process can be represented as dv
dt = −Mv.

The stability region for the simple forward Euler stepping scheme is a
unit circle centered at −1 on the negative real axis. Thus for stability we
must choose

µmax∆t = µmaxλ < 2,

while the asymptotic decay rate, given by the smallest eigenvalue, is
proportional to e−µmint.
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SEARCH PROCEDURE - 5

In order to improve the rate of convergence, one can set

δF = −λPG,

where P is a preconditioner for the search. An ideal choice is P = A∗−1,
so that the corresponding time dependent process reduces to

dF̂
dt

= −F̂ ,

for which all the eigenvalues are equal to unity, and F̂ is reduced to zero in
one time step by the choice ∆t = 1.
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QUASI-NEWTON METHODS

• Estimate A∗ from the change in G during the search process.

• Requires accurate estimates of G at each time step.

– Both the flow solution and adjoint equation

must be fully converged.

• Most quasi-Newton methods also require a line search in

each search direction, for which the flow equations and cost

function must be accurately evaluated several times.

• They have proven quite robust for aerodynamic optimization

(Reuther, Jameson, et al).
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SMOOTHING THE GRADIENT

An alternative approach which has also proved extremely

effective is to smooth the gradient by an implicit procedure,

and to replace G by its smoothed value Ḡ in the descent process.

This both acts as a preconditioner, and ensures that each new

shape in the optimization sequence remains smooth.

Interpretation =⇒
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SOBOLEV GRADIENT EQUIVALENT - 1

Define a weighted Sobolev inner product

〈u, v〉 =
∫

Ω

(uv + ε∇u · ∇v)dΩ ,

then
〈u, v〉 = (u, v) + (ε∇u,∇v)

where the (u, v) is the standard inner product in L2. Integration by parts
yields

〈u, v〉 = (u−∇ (ε∇u) , v) +
∫

∂Ω

εv
∂u

∂n
d∂Ω.
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SOBOLEV GRADIENT EQUIVALENT - 2

Using the inner product notation the variation of the cost function I
can be expressed as

δI = (G, δF) = 〈Ḡ, δF〉 =
(Ḡ − ∇ (

ε∇Ḡ)
, δF)

.

Therefore we can solve implicitly for Ḡ

Ḡ − ∇ (
ε∇Ḡ)

= G.

Then can set δF = −λḠ,

δI = −λ〈Ḡ, Ḡ〉 = −λ (G, Ḡ)
.
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COST OF SEARCH ALGORITHM

Steepest Descent O(N2) steps

Quasi-Newton O(N) steps

Smoothed Gradient O(K) steps
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Reference: Jameson, Vassberg
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COMPUTATIONAL COSTS

Finite Difference Gradients

+ Steepest Descent O(N 3)

Finite Difference Gradients

+ Quasi-Newton Search O(N 2)

Adjoint Gradients

+ Quasi-Newton Search O(N)

Adjoint Gradients

+ Smoothed Gradient Search O(K)

(Note: K is independent of N)
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PROCESS OVERVIEW

1. Solve the flow equations for ρ, u1, u2, p.
√

2. Solve the adjoint equations for ψ.
√

3. Evaluate G.
√

4. Project G into an allowable subspace.

5. Update the shape.
√

6. Return to 1 until convergence is reached.

Practical implementation of the design method relies heavily upon fast and
accurate solvers for both the state (w) and co-state (ψ) systems.
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CURRENT STATUS - STRUCTURED MESH

• 3D RANS Design

- Multiblock: Complex Configurations
- Multiple Design Points
- Successfully utilized in a wide variety of applications
∗ Complete Transonic Aircraft Configurations
∗ Rotating Machinery
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CURRENT STATUS - UNSTRUCTURED MESH

• 2D Euler Design

• 3D Euler Design

- Flow Solver: in place
- Adjoint Solver: in place
- Gradient Formulation: in place
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FUTURE WORK

• General Geometry Definition and Modification

• Mesh Modification

• Parallel Implementation

• Extension to RANS
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